#Science_News #Science #Turbofan
The turbofan was invented to improve the fuel consumption of the turbojet. It achieves this by pushing more air, thus increasing the mass and lowering the speed of the propelling jet compared to that of the turbojet. This is done mechanically by adding a ducted fan rather than using viscous forces by adding an ejector, as first envisaged by Whittle.
Frank Whittle envisioned flight speeds of 500 mph in his March 1936 UK patent 471,368 "Improvements relating to the propulsion of aircraft", in which he describes the principles behind the turbofan, although not called as such at that time. While the turbojet uses the gas from its thermodynamic cycle as its propelling jet, for aircraft speeds below 500 mph there are two penalties to this design which are addressed by the turbofan.
Firstly, energy is wasted as the propelling jet is going much faster rearwards than the aircraft is going forwards, leaving a very fast wake. This wake contains kinetic energy that reflects the fuel used to produce it, rather than the fuel used to move the aircraft forwards. A turbofan harvests that wasted velocity and uses it to power a ducted fan that blows air in bypass channels around the rest of the turbine. This reduces the speed of the propelling jet while pushing more air, and thus more mass.
The other penalty is that combustion is less efficient at lower speeds. Any action to reduce the fuel consumption of the engine by increasing its pressure ratio or turbine temperature to achieve better combustion causes a corresponding increase in pressure and temperature in the exhaust duct which in turn cause a higher gas speed from the propelling nozzle (and higher KE and wasted fuel). Although the engine would use less fuel to produce a pound of thrust, more fuel is wasted in the faster propelling jet. In other words, the independence of thermal and propulsive efficiencies, as exists with the piston engine/propeller combination which preceded the turbojet, is lost. In contrast, Roth considers regaining this independence the single most important feature of the turbofan which allows specific thrust to be chosen independently of the gas generator cycle.
The working substance of the thermodynamic cycle is the only mass accelerated to produce thrust in a turbojet which is a serious limitation (high fuel consumption) for aircraft speeds below supersonic. For subsonic flight speeds the speed of the propelling jet has to be reduced because there is a price to be paid in producing the thrust. The energy required to accelerate the gas inside the engine (increase in kinetic energy) is expended in two ways, by producing a change in momentum ( ie a force), and a wake which is an unavoidable consequence of producing thrust by an airbreathing engine (or propeller). The wake velocity, and fuel burned to produce it, can be reduced and the required thrust still maintained by increasing the mass accelerated. A turbofan does this by transferring energy available inside the engine, from the gas generator, to a ducted fan which produces a second, additional mass of accelerated air.
The transfer of energy from the core to bypass air results in lower pressure and temperature gas entering the core nozzle (lower exhaust velocity) and fan-produced temperature and pressure entering the fan nozzle. The amount of energy transferred depends on how much pressure rise the fan is designed to produce (fan pressure ratio). The best energy exchange (lowest fuel consumption) between the two flows, and how the jet velocities compare, depends on how efficiently the transfer takes place which depends on the losses in the fan-turbine and fan.
The fan flow has lower exhaust velocity, giving much more thrust per unit energy (lower specific thrust). Both airstreams contribute to the gross thrust of the engine. The additional air for the bypass stream increases the ram drag in the air intake stream-tube, but there is still a significant increase in net thrust. The overall effective exhaust velocity of the two exhaust jets can be made closer to a normal subsonic aircraft's flight speed and gets closer to the ideal Froude efficiency. A turbofan accelerates a larger mass of air more slowly, compared to a turbojet which accelerates a smaller amount more quickly, which is a less efficient way to generate the same thrust.
The ratio of the mass-flow of air bypassing the engine core compared to the mass-flow of air passing through the core is referred to as the bypass ratio. Engines with more jet thrust relative to fan thrust are known as low-bypass turbofans, those that have considerably more fan thrust than jet thrust are known as high-bypass. Most commercial aviation jet engines in use today are high-bypass, and most modern fighter engines are low-bypass. Afterburners are used on low-bypass turbofans on combat aircraft.
The turbofan was invented to improve the fuel consumption of the turbojet. It achieves this by pushing more air, thus increasing the mass and lowering the speed of the propelling jet compared to that of the turbojet. This is done mechanically by adding a ducted fan rather than using viscous forces by adding an ejector, as first envisaged by Whittle.
Frank Whittle envisioned flight speeds of 500 mph in his March 1936 UK patent 471,368 "Improvements relating to the propulsion of aircraft", in which he describes the principles behind the turbofan, although not called as such at that time. While the turbojet uses the gas from its thermodynamic cycle as its propelling jet, for aircraft speeds below 500 mph there are two penalties to this design which are addressed by the turbofan.
Firstly, energy is wasted as the propelling jet is going much faster rearwards than the aircraft is going forwards, leaving a very fast wake. This wake contains kinetic energy that reflects the fuel used to produce it, rather than the fuel used to move the aircraft forwards. A turbofan harvests that wasted velocity and uses it to power a ducted fan that blows air in bypass channels around the rest of the turbine. This reduces the speed of the propelling jet while pushing more air, and thus more mass.
The other penalty is that combustion is less efficient at lower speeds. Any action to reduce the fuel consumption of the engine by increasing its pressure ratio or turbine temperature to achieve better combustion causes a corresponding increase in pressure and temperature in the exhaust duct which in turn cause a higher gas speed from the propelling nozzle (and higher KE and wasted fuel). Although the engine would use less fuel to produce a pound of thrust, more fuel is wasted in the faster propelling jet. In other words, the independence of thermal and propulsive efficiencies, as exists with the piston engine/propeller combination which preceded the turbojet, is lost. In contrast, Roth considers regaining this independence the single most important feature of the turbofan which allows specific thrust to be chosen independently of the gas generator cycle.
The working substance of the thermodynamic cycle is the only mass accelerated to produce thrust in a turbojet which is a serious limitation (high fuel consumption) for aircraft speeds below supersonic. For subsonic flight speeds the speed of the propelling jet has to be reduced because there is a price to be paid in producing the thrust. The energy required to accelerate the gas inside the engine (increase in kinetic energy) is expended in two ways, by producing a change in momentum ( ie a force), and a wake which is an unavoidable consequence of producing thrust by an airbreathing engine (or propeller). The wake velocity, and fuel burned to produce it, can be reduced and the required thrust still maintained by increasing the mass accelerated. A turbofan does this by transferring energy available inside the engine, from the gas generator, to a ducted fan which produces a second, additional mass of accelerated air.
The transfer of energy from the core to bypass air results in lower pressure and temperature gas entering the core nozzle (lower exhaust velocity) and fan-produced temperature and pressure entering the fan nozzle. The amount of energy transferred depends on how much pressure rise the fan is designed to produce (fan pressure ratio). The best energy exchange (lowest fuel consumption) between the two flows, and how the jet velocities compare, depends on how efficiently the transfer takes place which depends on the losses in the fan-turbine and fan.
The fan flow has lower exhaust velocity, giving much more thrust per unit energy (lower specific thrust). Both airstreams contribute to the gross thrust of the engine. The additional air for the bypass stream increases the ram drag in the air intake stream-tube, but there is still a significant increase in net thrust. The overall effective exhaust velocity of the two exhaust jets can be made closer to a normal subsonic aircraft's flight speed and gets closer to the ideal Froude efficiency. A turbofan accelerates a larger mass of air more slowly, compared to a turbojet which accelerates a smaller amount more quickly, which is a less efficient way to generate the same thrust.
The ratio of the mass-flow of air bypassing the engine core compared to the mass-flow of air passing through the core is referred to as the bypass ratio. Engines with more jet thrust relative to fan thrust are known as low-bypass turbofans, those that have considerably more fan thrust than jet thrust are known as high-bypass. Most commercial aviation jet engines in use today are high-bypass, and most modern fighter engines are low-bypass. Afterburners are used on low-bypass turbofans on combat aircraft.
#Science_News #Science #Turbofan
The turbofan was invented to improve the fuel consumption of the turbojet. It achieves this by pushing more air, thus increasing the mass and lowering the speed of the propelling jet compared to that of the turbojet. This is done mechanically by adding a ducted fan rather than using viscous forces by adding an ejector, as first envisaged by Whittle.
Frank Whittle envisioned flight speeds of 500 mph in his March 1936 UK patent 471,368 "Improvements relating to the propulsion of aircraft", in which he describes the principles behind the turbofan, although not called as such at that time. While the turbojet uses the gas from its thermodynamic cycle as its propelling jet, for aircraft speeds below 500 mph there are two penalties to this design which are addressed by the turbofan.
Firstly, energy is wasted as the propelling jet is going much faster rearwards than the aircraft is going forwards, leaving a very fast wake. This wake contains kinetic energy that reflects the fuel used to produce it, rather than the fuel used to move the aircraft forwards. A turbofan harvests that wasted velocity and uses it to power a ducted fan that blows air in bypass channels around the rest of the turbine. This reduces the speed of the propelling jet while pushing more air, and thus more mass.
The other penalty is that combustion is less efficient at lower speeds. Any action to reduce the fuel consumption of the engine by increasing its pressure ratio or turbine temperature to achieve better combustion causes a corresponding increase in pressure and temperature in the exhaust duct which in turn cause a higher gas speed from the propelling nozzle (and higher KE and wasted fuel). Although the engine would use less fuel to produce a pound of thrust, more fuel is wasted in the faster propelling jet. In other words, the independence of thermal and propulsive efficiencies, as exists with the piston engine/propeller combination which preceded the turbojet, is lost. In contrast, Roth considers regaining this independence the single most important feature of the turbofan which allows specific thrust to be chosen independently of the gas generator cycle.
The working substance of the thermodynamic cycle is the only mass accelerated to produce thrust in a turbojet which is a serious limitation (high fuel consumption) for aircraft speeds below supersonic. For subsonic flight speeds the speed of the propelling jet has to be reduced because there is a price to be paid in producing the thrust. The energy required to accelerate the gas inside the engine (increase in kinetic energy) is expended in two ways, by producing a change in momentum ( ie a force), and a wake which is an unavoidable consequence of producing thrust by an airbreathing engine (or propeller). The wake velocity, and fuel burned to produce it, can be reduced and the required thrust still maintained by increasing the mass accelerated. A turbofan does this by transferring energy available inside the engine, from the gas generator, to a ducted fan which produces a second, additional mass of accelerated air.
The transfer of energy from the core to bypass air results in lower pressure and temperature gas entering the core nozzle (lower exhaust velocity) and fan-produced temperature and pressure entering the fan nozzle. The amount of energy transferred depends on how much pressure rise the fan is designed to produce (fan pressure ratio). The best energy exchange (lowest fuel consumption) between the two flows, and how the jet velocities compare, depends on how efficiently the transfer takes place which depends on the losses in the fan-turbine and fan.
The fan flow has lower exhaust velocity, giving much more thrust per unit energy (lower specific thrust). Both airstreams contribute to the gross thrust of the engine. The additional air for the bypass stream increases the ram drag in the air intake stream-tube, but there is still a significant increase in net thrust. The overall effective exhaust velocity of the two exhaust jets can be made closer to a normal subsonic aircraft's flight speed and gets closer to the ideal Froude efficiency. A turbofan accelerates a larger mass of air more slowly, compared to a turbojet which accelerates a smaller amount more quickly, which is a less efficient way to generate the same thrust.
The ratio of the mass-flow of air bypassing the engine core compared to the mass-flow of air passing through the core is referred to as the bypass ratio. Engines with more jet thrust relative to fan thrust are known as low-bypass turbofans, those that have considerably more fan thrust than jet thrust are known as high-bypass. Most commercial aviation jet engines in use today are high-bypass, and most modern fighter engines are low-bypass. Afterburners are used on low-bypass turbofans on combat aircraft.
0 الوسوم
0 المشاركات
1 مشاهدة